数学说课稿

时间:2024-06-21 16:03:36
实用的数学说课稿模板合集10篇

实用的数学说课稿模板合集10篇

作为一位杰出的教职工,有必要进行细致的说课稿准备工作,编写说课稿助于积累教学经验,不断提高教学质量。我们应该怎么写说课稿呢?下面是小编整理的数学说课稿10篇,仅供参考,希望能够帮助到大家。

数学说课稿 篇1

一说教材

1、地位和作用:节课是人教版中职数学(必修)8.2.1任意角三角函数的第一课时任意角的三角函数是本章教学内容的基本概念,对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。教教学重点:任意角三角函数的定义

教学重点:1正确理解三角函数的定义2任意角三角函数在各个象限的符号教学难点:标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;

学情分析:学生已经掌握的内容,学生学习能力

1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2.学生具备一定的自学能力,部分同学对数学的学习有兴趣和积极性。

3.在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行知识目标 1);,1、理解任意角的三角函数的定义;

2、三角函数值的符号

3、会求任意角的三角函数值;

4、体会类比,数形结合的思想。

能力目标:

(1)理解并掌握任意角的三角函数的定义;

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

情感目标:

(1)学习转化的思想,

(2)培养严谨的学习态度;

二说教法

温故知新,逐步拓展

(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;

(2)通过例题讲解分析,逐步引出新知识,完善三角定义

三说学法

通过对已经掌握的锐角三角函数推广到任意角的三角函数定义,引导出三角函数在各个象限内的符号,会求任意角的三角函数,学会从现有的知识探索新的知识,善于发现问题,提出问题,归纳问题,从而达到解决问题的目的。

四教学过程

总体来说,由旧及新,由易及难, 逐步加强,层层深入由初中的直角三角形中锐角三角函数的定义过度到直角坐标系中锐角三角函数的定义再发展到直角坐标系中任意角三角函数的定义给定定义后通过应用定义又逐步发现新知识拓展完善定义。

1引入: 练习:sin300= cos300= tan300=

那么3000,300000呢?

复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答:

SinA=对边/斜边

cosA=对边/斜边

tanA=对边/斜边

我们已经学习了锐角三角函数,知道它是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?

2逐步拓展:在高中我们已经建立了直角坐标系,()从直角三角形改为平面直角坐标系。

那么三角函数的定义能否也放到坐标系去研究呢?

把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了

设a是一个任意角,它的始边与x轴正半轴重合,在终边的终边上任取一点P(a,b),它与原点的距离r=>0,

表示三角函数;sin=, cos=, tan=,

(1) 叫做a的正弦,记作sina, sin=,

(2) x叫做a的余弦,记作cosa,即cosa=;

(3) ,叫做a的正切,记作tana,即tana=,.

我们将它们统称为三角函数。

从而得到

知识归纳一:任意一个角的三角函数的定义

提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关。

3例题讲解

例1已知角A 的终边经过P(2,-3),求角A的三个三角函数值

(此题由学生自己分析独立动手完成)

知识归纳二:三个三角函数的定义域

例题变式1, 已知角A 的终边经过P(-2a,-3a)( a不为0),求角A的三个三角函数值

解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点

知识归纳三:三角函数值的正负与角所在象限的关系

由学生推出结论,教师总结符号记忆方法:一全正,二正弦,三两切,四余弦,便于学生记忆

例题2:已知A在第二象限且 sinA=0.2 求cosA,tanA

求cosA,tanA

拓展,如果不限制A的象限呢,可以留作课外探讨

4随堂练习

1、若,则在( B )

A.第一、四象限 B.第一、三象限 C.第一、二象限 D.第二、四象限

2、角终边上有一点(a,a)则sin= ( B )

A. B.-或 C.- D.1

5小结:

1、 任意角三角函数的定义

2、 三角函数值的符号

3、 会求任意角三角函数值

6课堂作业P100 1,2,4

(学生演板,教师讲解)

课后分层作业(满足不同层次的学生)

必作P23 1,2,3 练习B

五板书设计

课题引入定义例一例二

小结

数学说课稿 篇2

大家好!今天我说课的内容是人教版小学数学六年级上册第二单元《分数除法》中的《一个数除以分数》

教材分析:

《一个数除以分数》是人教版小学数学六年级上册第二单元《分数除法》第2节的内容,它包括了分数除法的各种情况,学生理解了这个计算法则,就能掌握分数除法的计算方法。

这部分内容是在学生具有了分数除以整数的计算概念及之前学习的分数乘法的经验的基础上教学的,是学生进一步学习分数除法中解决问题、比的认识重要基础,学习的过程中用到了转化、归纳、数形结合、验证的数学思想方法。本课时通过例2的教学使学生学会探索分数除法的计算方法。

结合以上的分析和课标的要求,根据六年级学生的认知发展水平,我拟定本课 ……此处隐藏12764个字……据具体情境中的数量关系列方程,既有利于学生进一步熟悉列方程的思维特点,又有利于学生对方程含义的理解。

4.引导小结

本课的小结采用学生小结的模式,这是让学生学会自己梳理已经学习过的知识,然后我再对学生的小结进行总结。

5.布置作业

为了使所有学生巩固所学知识,我布置了必做题:要求学生每个人写一篇数学日记,即通过这节课的学习,有哪些收获,还有哪些疑问。同时又为学有余力的学生留有自由发展的空间,我布置了探究题。

数学说课稿 篇10

一.说教材

(一)教学内容

本节课主要内容是命题的概念,能把命题改写若p则q的形式,渗透由特殊到一般的化归数学思想。

(二)教材的地位作用

命题的概念,若p则q形式的命题是本章的重要内容,是后续学习充要条件的基础,这一章我们在初中的基础上学习常用逻辑用语,体会逻辑用语去表达和论证中的作用,他将成为反证法的理论依据,并为进一步学习,特别是培养学生的思维能力,推证能力打基础

(三)教学目标

1、知识与技能:

(1)理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;

(2)能把命题改写成“若p,则q”的形式;

2、过程与方法:

(1)多让学生举命题的例子,培养他们的辨析能力;

(2)能把命题改写成“若p,则q”的形式;培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.

3、情感、态度与价值观:

通过学生的参与,激发学生学习数学的兴趣。

(四)教学重点:

命题的概念、命题的构成

(五)教学难点:

分清命题的条件、结论和判断命题的真假

二说教法

教学过程是教师和学生共同参与的过程,是师生多向合作的过程,鼓励学生自主学习,充分调动学生的积极性、主动性。以学生发展为本,有效的渗透数学思想方法,提高学生素质,根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)引导发现法

(2)练习巩固法

三、说学法

教给学生学习方法比教给学生知识更重要,本节课注意调动学生积极思考,主动探索,尽可能地让学生参与到教学活动中,我进行如下学法指导:

(1)由特殊到一般的划归方法:学习中学生在教师的引导下,通过具体的案例,让学生去观察、讨论、探索、分析、发现、归纳、概括

(2)练习巩固法

四、教学过程

学生探究过程:

1.思考、分析

下列语句的表述形式有什么特点?你能判断他们的真假吗?

(1)三角形的三个内角之和等于1800

(2)如果a,b是任意两个正实数,那么a+b≥2(ab)1/2;

(3)如果实数a满足a2=9,则a=3;

(4)中学生目前的学业负担过重;

(5)中国将在本世纪中叶达到中等发达国家的水平

2.讨论、判断

学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(2)为真,(3)为假,(4)(5)的真假需要根据实际情况确定,总是可以确定真假.

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

3.抽象、归纳

定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

例1判断下列语句中哪些是命题?是真命题还是假命题?

(1)空集是任何集合的子集;(真命题)

(2)若整数a是素数,则a是奇数;(假命题)

(3)指数函数是增函数吗?(不是)

(4)若空间中两条直线不相交,则这两条直线平行;(假命题)

(5)x>15.(不是)

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

练习

判断下列语句中哪些是命题?是真命题还是假命题?

(4)求证∏是无理数

(5)若X是实数,则X2+4X+5≥0

4.命题的构成――条件和结论

上面例1中的(2)(4)具有“若p,则q”的形式.在数学中,这种形式的命题是常见的.

“若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.

其中p叫做命题的条件,q叫做命题的结论.

例2指出下列命题中的条件p和结论q;

(1)若整数a能被2整除,则a是偶数;

(2)若四边形是菱形,则它的对角线互相垂直且平分

解:(1)条件p:整数a能被2整除,结论q:整数a是偶数;

(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.

有一些命题表面上不是“若p,则q”的形式,但可以改写成“若p,则q”的形式,例如:

垂直于同一条直线的两个平面平行.

若两个平面垂直于同一条直线,则这两个平面平行.

例3将下列命题改写成“若p,则q”的形式,并判断真假;

(1)垂直于同一条直线的两条直线平行;

(2)负数的立方是负数;

(3)对顶角相等;

解:(1)若两条直线垂直于同一条直线,则这两条直线平行,它是假命题。

(2)若一个数是负数,则这个数的立方是负数。它是真命题。

(3)若两个角是对顶角,则这两个角相等。它是真命题。

5.练习:P4:1.2.3

6.课堂小结

(1)、命题的概念

(2)、能指出命题的条件和结论

7.思考题

一,下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么系?

(1)若f(x)是正弦函数,则f(x)是周期函数;

(2)若f(x)是周期函数,则f(x)是正弦函数;

(3)若f(x)不是正弦函数,则f(x)不是周期函数;

(4)若f(x)不是周期函数,则f(x)不是正弦函数;

二,四种命题中任意两个命题之间有关系吗?是什么关系?它们的真假性之间有关系吗?是什么关系?

8.作业 P8:习题1.1A组第1、题

《实用的数学说课稿模板合集10篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式